Abstract

Abstract WC-Co-Cr represents an important composition for hardmetal-like coatings which is appHed when simuhaneous wear and corrosion resistance is required. In this paper five commercially available spray powders obtained by various production techniques (sintered and crushed as well as agglomerated and plasma-densified) of the composition WC-10%Co- 4%Cr have been thoroughly characterized and were sprayed by DCS, HVOF (CDS process) and APS. The microstructures of the coatings were characterized and their wear behaviour was investigated by means of an abrasion wear test. For the best of these powders the wear resistance was nearly equal for the DGS and HVOF coatings. Other powders show significant differences with respect to their processabilities in these spray processes. APS coatings from all powders, obtained with an Ar/H2 plasma showed inferior microstructures and significant lower wear resistance. The spray powder compositions, grain sizes and structures were found to determine the processability of the powders and the microstructure and properties of the coatings. COMPOSITE MATERIALS of the type hard phase - metallic binder with WC and CoCr as constituents are widely used for the preparation of hardmetal-like coatings. The chromium addition to the metallic binder is thought to improve its corrosion resistance in comparison with pure WC-Co. This has led to many applications of WC-CoCr coatings where simultaneous wear and corrosion resistance is required. Despite of its significant practical importance only a limited number of publications is devoted to detailed questions of structure and properties of WC-CoCr coatings (1-3). In some comparative studies such coatings have been investigated together with WC-Co and Cr3C2-NiCr coatings (4-8). However, systematic investigations of spray powder compositions and morphologies as well as investigations of the influence of different thermal spray processes on coating structures and properties which have repeatedly been provided for WC-Co (for example (9, 10)) are missing for WC-CoCr. In this paper a short survey of literature on the phase relationships in the WC-CoCr system and the effect of chromium additions on the properties of sintered parts and thermally sprayed coatings compared to WC-Co is given. In the experimental part a systematic study of the influence of the preparation process on composition and morphology of commercially available WC-10%Co-4%Cr spray powders was provided. These powders have been sprayed by DGS, HVOF and APS and the microstructure and basic properties of the coatings have been studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call