Abstract

BackgroundIn recent years, it has been demonstrated the inhibitory effect of some plant species on the angiotensin-converting enzyme and rosmarinic acid is a prominent constituent of these species. Hypothesis/PurposeThis study was carried out to verify the effect of rosmarinic acid on blood pressure through inhibitory activity on angiotensin-converting enzyme in rats. Study designThe arterial hypertension was promoted using 2-kidneys 1-clip model in rats. The potential inhibitory rosmarinic acid effect on angiotensin-converting enzyme activity was compared with captopril actions by analyzing in vivo blood pressure dose-response curves to angiotensin I and bradykinin. The in vitro plasma angiotensin-converting enzyme activity was measured by fluorimetry using the substrate Abz-FRK(Dnp)P-OH substrate. In addition, dosages of nitrite/nítrate analysis were carried out. Results(1) rosmarinic acid caused systolic blood pressure dose-dependent decrease in hypertensive rats; (2) The angiotensin I dose-response curves demonstrated that rosmarinic acid promotes minor changes in systolic blood pressure only in the hypertensive group; (3) The bradykinin dose-response curves showed that both rosmarinic acid and captopril promoted a systolic blood pressure reduction, but only the captopril effect was significant; (4) The angiotensin-converting enzyme activity in rat lung tissue was inhibited by the rosmarinic acid in a dose dependent manner; (5) The analysis of nitrite/nítrate plasma concentrations showed no significant difference among the experimental groups. ConclusionThe rosmarinic acid is effective in reducing blood pressure, selectively, only in hypertensive animals. The rosmarinic acid (173µM) promoted almost a 98.96% reduction on angiotensin-converting enzyme activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.