Abstract

BackgroundSickle cell disease (SCD) incurs vaso-occlusive episodes and organ damage, including nephropathy. Despite displaying characteristics of vascular dysfunction, SCD patients tend to present relatively lower systemic blood pressure (BP), via an unknown mechanism. We investigated associations between BP and renin-angiotensin-system (RAS) components in SCD and determined whether an inhibitor of angiotensin converting enzyme (ACE; often used to slow SCD glomerulopathy) further modulates BP and RAS components in a murine model of SCD.MethodsBP was compared in human subjects and mice with/without SCD. Plasma angiotensin II, ACE and renin were measured by immunoassay. BP was reevaluated after treating mice with enalapril (25 mg/kg, 5x/week) for 5 weeks; plasma and organs were stored for angiotensin II and ACE activity measurement, and quantitative real-time PCR.ResultsDiastolic BP and systolic BP were significantly lower in patients and mice with SCD, respectively, compared to controls. Reduced BP was associated with increased plasma renin and markers of kidney damage (mice) in SCD, as well as significantly decreased plasma ACE concentrations and ACE enzyme activity. As expected, enalapril administration lowered BP, plasma angiotensin II and organ ACE activity in control mice. In contrast, enalapril did not further reduce BP or organ ACE activity in SCD mice; however, plasma angiotensin II and renin levels were found to be significantly higher in enalapril-treated SCD mice than those of treated control mice.ConclusionRelative hypotension was confirmed in a murine model of SCD, in association with decreased ACE concentrations in both human and murine disease. Given that ACE inhibition has an accepted role in decreasing BP, further studies should investigate mechanisms by which ACE depletion, via both Ang II-dependent and alternative pathways, could contribute to reduce BP in SCD and understand how ACE inhibition confers Ang II-independent benefits on kidney function in SCD.

Highlights

  • Sickle cell disease (SCD) is an inherited hemoglobinopathy that arises from the synthesis of abnormal hemoglobin (Hb) S

  • blood pressure (BP) was reevaluated after treating mice with enalapril (25 mg/kg, 5x/week) for 5 weeks; plasma and organs were stored for angiotensin II and angiotensin converting enzyme (ACE) activity measurement, and quantitative real-time PCR

  • Diastolic BP and systolic BP were significantly lower in patients and mice with SCD, respectively, compared to controls

Read more

Summary

Introduction

Sickle cell disease (SCD) is an inherited hemoglobinopathy that arises from the synthesis of abnormal hemoglobin (Hb) S. The RAS consists of a conventional vasopressor pathway whereby renin, a proteolytic enzyme that is synthesized, stored and secreted by the cells of the juxtaglomerular apparatus in response to reduced afferent arteriolar pressure, cleaves angiotensinogen, produced by the liver, to form angiotensin I (Ang I). Angiotensin converting enzyme (ACE; an ectoenzyme), found primarily on the surface of endothelial cells, cleaves Ang I to the 8 amino acid peptide, Angiotensin II (Ang II), which has potent short-term vasoconstrictor properties. Sickle cell disease (SCD) incurs vaso-occlusive episodes and organ damage, including nephropathy. Despite displaying characteristics of vascular dysfunction, SCD patients tend to present relatively lower systemic blood pressure (BP), via an unknown mechanism. We investigated associations between BP and renin-angiotensin-system (RAS) components in SCD and determined whether an inhibitor of angiotensin converting enzyme (ACE; often used to slow SCD glomerulopathy) further modulates BP and RAS components in a murine model of SCD

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call