Abstract
Microstructure can vary significantly through thickness after ultrafast cooling of rolled steel plates, impacting their mechanical properties. This study examined the microstructure, microstructural banding at centerline, and mechanical properties through thickness for different ultrafast cooling conditions and rolling temperatures. One set of steels (UC1 and UC2) were ultrafast-cooled (UFC) at 40 K/s after finish rolling at 1223 K and 1193 K (950 °C and 910 °C), respectively, while the second set (LC) was cooled by laminar cooling at 17 K/s after finish rolling at 1238 K (965 °C). UFC produced microstructural variation through thickness; highly dislocated lath-type bainitic ferrite was formed near the surface, whereas the primary microstructure was acicular ferrite and irregular polygonal ferrite in the interior of UC1 and UC2 steels, respectively. However, UFC has the advantage of suppression of microstructural banding in centerline segregation regions. The ferrite grain size in both UFC-cooled steels was refined to ~5 μm, increasing strength and toughness. The optimum combination of properties was obtained in UC2 steel with appropriate low finish rolling temperature, being attributed to the distinct microstructure resulting from work-hardened austenite before UFC.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have