Abstract
Abstract It is crucial to understand cement sheath degradation mechanisms, since the cement sheath is an important well barrier element. Repeated pressure cycling is known to cause radial cracks and microannuli in the cement sheath, and the stiffness of the surrounding rock determines how much pressure the cement withstands before failure. However, experimental data on the effect of surrounding rock (shale vs. sandstone) on cement sheath integrity are scarce. In this paper we present experimental studies on how different surrounding rocks influence cement sheath integrity. We have used our unique downscaled experimental set-up to perform pressure cycling tests with both shale and sandstones, where cement sheath integrity is visualized in 3D by X-ray computer tomography (CT). The obtained results confirm that a cement sheath surrounded by a rock with a relative higher Young’s modulus can withstand higher casing pressure compared to a cement sheath surrounded by rock with relative lower Young modulus. All cracks were initially observed as small defects in the cement sheath prior to expanding to full radial cracks and propagation into the surrounding formation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have