Abstract

Ferromagnetic CoNi nanocrystals with different shape and size were synthesized by reduction in liquid polyol via heterogeneous nucleation. Morphological, structural and compositional characterizations of the nanocrystals were performed together with magnetic property measurements. The CoNi nanocrystals can be controlled to form nanowires or nanorods with length of 20-200 nm and diameter of 5-20 nm by using different catalyst concentration in the synthesis. It is found that the magnetic coercivity of the CoNi nanowires/ nanorods depends on the morphology. The highest coercive force of 2.9 kOe was obtained for nanowires of 50 × 200 nm with Co <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">80</sub> Ni <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">20</sub> composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call