Abstract
The application of resonant magnetic perturbations (RMPs) with a toroidal mode number of n = 4 or n = 6 to lower single null plasmas in the MAST tokamak produces up to a factor of 5 increase in edge-localized mode (ELM) frequency and reduction in plasma energy loss associated with type-I ELMs. A threshold current for ELM mitigation is observed above which the ELM frequency increases approximately linearly with current in the coils. Despite a large scan of parameters, complete ELM suppression has not been achieved. The results have been compared with modelling performed using either the vacuum approximation or including the plasma response. During the ELM mitigated stage clear lobe structures are observed in visible-light imaging of the X-point region. The size of these lobes is correlated with the increase in ELM frequency observed. The characteristics of the mitigated ELMs are similar to those of the natural ELMs suggesting that they are type-I ELMs which are triggered at a lower pressure gradient. The application of the RMPs in the n = 4 and n = 6 configurations before the L–H transition has little effect on the power required to achieve H-mode while still allowing the first ELM to be mitigated.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have