Abstract
This study examined the water-vapour permeability of thin polymerized resin films fabricated from five co-monomer blends of increasing degrees of hydrophilicity, as measured by their Hoy's solubility parameters. Neat resin films were prepared from five experimental light-curable resins (n = 10). Each film was mounted in a Fisher permeability cup with 8 g of water placed inside the cup. The experiments were conducted in a modified twin-outlet desiccator connected to a vacuum pump in one outlet to permit a continuous airflow to encourage water evaporation. Weight losses by water evaporation were measured at 3, 6, 9, 24, 30, and 48 h by using an analytical balance. Additional resin films were examined by using transmission electron microscopy (TEM) after immersion in ammoniacal silver nitrate. A significant correlation was observed between the cumulative water loss at 48 h and the Hoy's total cohesive energy density (delta(t)). Transmission electron microscopy revealed silver-filled channels along film peripheries and silver grains of decreasing dimensions toward the film centres in co-monomer blends 3, 4, and 5 of increasing hydrophilicity. Hydrophilic dentin adhesives polymerized in thin films are prone to water loss by evaporation. This probably accounts for the water droplets seen on the surface of vital-bonded dentin after the application of simplified dentin adhesives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.