Abstract

As petrochemical products (including plastics) contribute to the destruction of the natural environment, the use of such products must be reduced. Plastics account for 90% of the insulation materials used in Korea, including extruded polystyrene (EPS), expanded polystyrene (XPS), and urethane foam. Wood-fiber insulation board (WIB) is a promising natural alternative to petrochemical insulation. This study aimed to determine the optimal amount of adhesive resin required for manufacturing WIB. Fire-resistant WIB was prepared with a melamine-urea-formaldehyde (MUF) resin (ranging from 20% to 35%), and the physicochemical and fire-resistant properties were determined. Higher resin content led to improved physical properties, while the thermal conductivity was unaffected. With the exception of 35% resin content in the WIB, the formaldehyde emissions of the WIB samples complied with the Korean Industrial Standards requirements for Super E0 grade (less than 0.3 mg per L). The physicochemical properties of the WIB samples were sufficient for use as an insulating material, even at 20% resin content. A perpendicular flame test revealed that all samples formed a carbonized layer to prevent flame penetration, except for the specimen with 20% of the resin content. The cone calorimeter testing indicated that the MUF adhesives acted as an effective fire retardant at resin contents above 25%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call