Abstract

In this article, an experimental investigation to study the effect of residual stresses on the nonlinear behavior of ferroelectric ceramic material is reported. The effect of residual stresses on the behavior at low electric field and mechanical stress is demonstrated first by showing the large difference in the linear properties measured from strain behavior under mechanical and electrical loading, and resonance method. This is followed by an investigation on the mechanism of polarization reversal due to cyclic electric field. Based on the observed large magnitude of strain and the comparison of the magnitude of the sum of transverse strains with the magnitude of strain in the poling direction it is concluded that polarization reversal due to cyclic electric field in the ferroelectric material at morphotropic phase boundary is the result of two successive 90o domain switchings. Finally, two types of combined loading experiments were conducted to investigate the residual stress and electric field effect on the mechanism of domain switching. The behavior under combined loading showed many new interesting characteristics, and possible mechanisms for such behavior is discussed. While most of the characteristics of the ferroelectric behavior observed in the present experimental study could be explained based on the residual stress state, the understanding of others need further studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.