Abstract

The performance of vacuum arc remelting (VAR) ingot depends largely on ingot structure and chemical uniformity, which are strongly influenced by molten pool profile that is influenced by VAR process. To better understand the effect of remelting current on molten pool profile of titanium alloy ingot during VAR process, a 3D finite element model is developed by the ANSYS software. The results show that there are three remelting stages during VAR process when the remelting current is 2.0 kA. The molten pool depth increases gradually from 30 to 320 s, then the change of molten pool depth is very small during the steady state stage from 320 to 386 s, and lastly the molten pool depth becomes shallow after 386 s. The melting rate and temperature of superheat increase with the remelting current increasing, which leads to the augment of molten pool volume. In the end, the total remelting time and steady state molten pool time decrease with the melting current from 1.6 to 2.8 kA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.