Abstract

Transcatheter aortic valve implantation of fibrin-based tissue engineered heart valves with a tubular leaflet construct have been developed as an alternative to invasive traditional surgical heart valve implantation. In general, they are well suited for the pulmonary position, but display insufficient mechanical properties for the aortic position. To enable the application of tissue-engineered valves in the systemic circulation, the tissue is reinforced with a textile scaffold. The current study seeks to compare the effect of varying the fiber volume fraction and orientation of bidirectional textile reinforcement on the closed-valve configuration. An anisotropic large deformation material model based on structural tensors was chosen and the materials were characterized. A finite element model was constructed of the heart valve, and the pinching and suturing of the corners along with application of pressure was simulated. Virtual experiments were conducted with fiber volume fractions of 0.1, 0.01, 0.001, and 0.0001 for ±45° fiber orientations. Furthermore, volume fraction was held at 0.01 and fiber orientations of 0°, ±15°, ±30°, ±45°, ±60°, ±75° and 90° from the tube’s axial direction were simulated and compared. It was shown that increasing the fiber volume fraction decreased the maximum principle strain in the valve, but lead to less closure. Additionally, the effect of fiber orientation affected the strains differently at different locations, depending on the local deformed geometry. This indicates that a non-uniform fiber distribution using tailored fiber placement could be used to optimize reinforcement design.

Highlights

  • Valvular heart disease is a steadily increasing socioeconomic burden worldwide

  • Tissue engineering (TE) of heart valves might overcome the well-known complications of contemporary devices implanted in young and elderly patients such as the need for a life-long anticoagulation therapy in the case of mechanical prostheses [2, 3], the degeneration and limited durability of the biological heart valves [2, 3] and the limited availability of homografts [4]

  • The ability of the model to converge with decreasing mesh size was investigated for the heart valve model without textile reinforcement

Read more

Summary

Introduction

Valvular heart disease is a steadily increasing socioeconomic burden worldwide. Tissue engineering (TE) of heart valves might overcome the well-known complications of contemporary devices implanted in young and elderly patients such as the need for a life-long anticoagulation therapy in the case of mechanical prostheses [2, 3], the degeneration and limited durability of the biological heart valves [2, 3] and the limited availability of homografts [4]. The ultimate goal is to provide the patient with an implant produced with and by the patient’s own cells, able to remodel and self-repair, with physiological haemocompatibility, biologically and mechanically equivalent to the native tissue. TE heart valves have been designed to mimic the complex shape of the native valve in the attempt to recreate the natural haemodynamics [5]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call