Abstract
We propose in this paper a Proper Generalized Decomposition (PGD) solver for reduced-order modeling of linear elastodynamic problems. It primarily focuses on enhancing the computational efficiency of a previously introduced PGD solver based on the Hamiltonian formalism. The novelty of this work lies in the implementation of a solver that is halfway between Modal Decomposition and the conventional PGD framework, so as to accelerate the fixed-point iteration algorithm. Additional procedures such that Aitken’s delta-squared process and mode-orthogonalization are incorporated to ensure convergence and stability of the algorithm. Numerical results regarding the ROM accuracy, time complexity, and scalability are provided to demonstrate the performance of the new solver when applied to dynamic simulation of a three-dimensional structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced Modeling and Simulation in Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.