Abstract

Large‐diameter monopiles have been widely used for constructing offshore wind turbines. The bearing capacity of a monopile foundation is a significant research problem. In this study, a new type of foundation, known as the pile–bucket foundation, was investigated to improve the bearing capacity of monopiles. A finite element software was used for establishing several numerical models of monopile and pile–bucket foundations to analyze the reinforcement afforded by the bucket attached to the monopile foundation. Furthermore, considering that offshore wind turbines are prone to resonance under the excitation of wind and wave loads, the natural frequencies of the monopile and pile–bucket foundations were determined and compared using both analytical and numerical methods. The results show that compared to the monopile foundation, the pile–bucket foundation has a significantly higher bearing capacity, mainly for large bucket diameters. The natural frequencies of the pile–bucket foundations are slightly higher than those of the monopile foundations. The addition of the bucket can effectively improve the natural frequency without changing the diameter of the monopile and thus saving the foundation cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.