Abstract

In this work, we have studied the effect of surface treatment of SiO2 dielectric layer on the reduction of the trap charge carrier density at dielectric/semiconducting interface by fabricating a metal–insulator–semiconductor (MIS) device using α, ω-dihexylcarbonylquaterthiophene as semiconducting layer. SiO2 dielectric layer has been treated with 1,1,1,3,3,3-hexamethyldisilazane (HMDS) to modify the chemical group acting as charge traps. Capacitance-voltage measurements have been performed on MIS devices fabricated on SiO2 and HMDS treated SiO2. These data have been used for the calculation of trap charge carrier density and Debye length at the dielectric-semiconductor interface. The calculated trap charge carrier density has been found to reduce from (2.925 ± 0.049) × 1016 cm−3 to (2.025 ± 0.061) × 1016 cm−3 for the MIS device with HMDS treated SiO2 dielectric in comparison to that of untreated SiO2. Next, the effect of reduction in trap charge carrier density has been studied on the performance of organic field effect transistors. The improvement in the device parameters like mobility, on/off ratio, and gate leakage current has been obtained with the effect of the surface treatment. The charge carrier mobility has been improved by a factor of 2 through this treatment. Further, the influence of the treatment was observed by atomic force microscope and Fourier transform infrared spectroscopy techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call