Abstract

Lithium-ion batteries (LIBs) are capable of meeting the challenges associated with next-generation energy storage devices. Use of NMC has grown at 400,000 tons per year in 2025. Because of its performance surpassing that of other cathode materials. Thus, in this work, the synthesis of lithium nickel manganese cobalt oxide (LiNi0.5Mn0.3Co0.2O2; NMC) was doped carbon in the calcination process was investigated. Excellent intercalation of lithium ions transfer between cathode and anode was noted. Differential Thermal Analysis (DTA) results showed that NMC crystalized at 550 °C. Changes were confirmed by using both X-ray diffract meter (XRD) and Scanning Electron Microscope (SEM). The study of the possibility of NMC cathode materials in which the enhancement of electrochemical performance was investigated by charge–discharge capacity in 0.1C-rate were carried out to reveal carbon's effect pristine NMC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call