Abstract

Reduced protein intake during pregnancy decreased maternal hepatic and plasma docosahexaenoic acid concentrations and impaired docosahexaenoic acid accumulation into fetal brain in the rat. The present study investigated whether restriction of maternal protein intake during pregnancy in the rat alters membrane phospholipid fatty acid composition in the offspring after weaning. Female rats (six per group) were mated and fed diets containing either 180 or 90 g protein/kg throughout pregnancy. Mothers were transferred to standard chow after delivery and the litters reduced to eight pups. Weaning was at 28 d and pups were killed 5 to 6 d later. Tissue weights or membrane total phosphatidylcholine (PC) and phosphatidylethanolamine (PE) concentrations in the offspring did not differ between dietary groups. There were significant differences between the 180 and 90 g/kg groups in liver, brain, lung and heart fatty acid composition that differed between tissues and phospholipid classes. For example, docosahexaenoic and arachidonic acid concentrations were 23 and 10 % lower respectively in hepatic PC, but not PE, in the 90 g/kg group. In brain, docosahexaenoic acid concentration was 17 % lower in PC, but not PE, while arachidonic acid content was 21 % greater in PE but unchanged in PC. The greatest differences were in unsaturated fatty acids, which suggests alterations to desaturase activities and/or the specificity of phospholipid biosynthesis. These results suggest that restricted maternal protein intake during pregnancy results in persistent alterations to membrane fatty acid content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call