Abstract

During pregnancy, the accumulation of long-chain polyunsaturated fatty acids (LCPUFA) in fetal tissues places a substantial demand upon maternal lipid metabolism. As lipid metabolism is intimately linked to aspects of protein metabolism, a reduced protein intake in pregnancy may impair activities of enzymes and transport proteins responsible for supplying LCPUFA to the fetus, thereby compromising fetal development. We have investigated the effect of reduced protein intake on LCPUFA status in the non-pregnant rat and in the pregnant rat, and in fetus at day 20 of gestation. Female rats (n 5 per group) were either mated and fed the control diet (180 g protein/kg) or low-protein diet (90 g protein/kg, LPD) diet throughout pregnancy, or fed the control diet or LPD for 20 d (non-pregnant animals). The fatty acid compositions of maternal liver and plasma, and fetal liver and brain were determined by GC. Feeding the LPD did not lead to any gross changes either in adult or fetal growth, or in total lipid concentrations in adult rat liver. However, the LPD was associated specifically with lower liver (42.6 %) and plasma (19.4 %) phosphatidylcholine (PC), and plasma triacylglycerol (28.6 %) docosahexaenoic acid (DHA) concentrations in pregnant rats and reduced fetal brain PC- (26.1 %) and phosphatidylethanolamine- (25.6 %) DHA concentrations. Together, these results show that variations in maternal dietary protein consumption alter DHA status in pregnancy and modify DHA accumulation into the fetal brain. The present results suggest that lower maternal protein intakes reduce delivery of DHA from the mother to the fetus, which may impair development and function of the fetal brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.