Abstract

A strong positive correlation between development time and body size is commonly assumed. However, the evidence is increasing that the correlation between the two traits can be positive, zero or negative, depending on whether the two traits are under antagonistic or synergistic selection. In the present study, we examined the relation between larval development time and pupal weight of the rice stem borer Chilo suppressalis under laboratory and field conditions. For individuals reared at constant temperatures (22, 25, 28 and 31°C), a longer larval period tended to result in larger pupae, showing a positive correlation between larval development time and pupal weight; whereas for those reared under field conditions, a longer larval period tended to result in smaller pupae at 23.5 and 29.8°C, showing a negative correlation between the two traits. There was no correlation between the two traits at the mean daily temperature of 31°C. At constant temperatures, larval development time shortened significantly as rearing temperature increased, whereas pupae tended to become larger at higher temperatures, although no significant difference was detected among temperatures for pupal weight. Under field conditions, larval development time decreased significantly as the mean daily temperature increased, whereas pupal weight of females increased significantly with the increase in the mean daily temperature, which is an example of the reverse temperature–size rule. Feeding method significantly affected larval development time and pupal weight. For individuals fed on live rice plants, larval development time shortened significantly and pupal weight increased significantly compared with those reared on fresh rice stems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.