Abstract

In this work, we report on the effects of Rapid Thermal Annealing (RTA) on the structural, electrical and optical properties of polycrystalline InGaN thin films deposited on amorphous fused silica substrates by molecular beam deposition. Films with 20%, 35% and 50% indium content were grown and subjected to post-deposition RTA treatments. Annealing promoted crystallization in the case of the film with 0.5 InN mole fraction while in the lower indium content cases no apparent effect on the improvement of crystallinity was observed. For RTA temperature above 550°C, film resistivity was reduced by at least two orders of magnitude due to annealing-induced increased carrier concentration. The optical properties of the films were systematically studied by variable angle spectroscopic ellipsometry. In the highest indium content films, a monotonic optical band gap widening was observed upon annealing, explained by the Burstein–Moss effect. In contrast, photoluminescence peak position was not affected by the resulting Fermi level changes. This is attributed to the different mechanisms between optical absorption and emission in such highly doped semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.