Abstract
It is widely accepted that the addition of redox mediators increases the decolorization rates of azo dyes by bacterial strains under anaerobic conditions. However, little information exists about whether quinoid redox mediators can enhance the performance of aerobic azo dye decolorization. In the present study, quinone-mediated decolorization of different azo dyes by whole cells and cell extracts from the Escherichia coli strain CD-2 under aerobic conditions were investigated. The results demonstrated that reduction rates of different azo dyes were greatly increased when quinone compounds were used as redox mediators. Compared with menadione, 2-hydroxy-1,4-naphthoquinone (lawsone) was more effective at aiding azo dye degradation and the optimum concentration for lawsone is 0.1mM. Strain CD-2 and the anthraquinone were co-immobilized by entrapment in different polymeric matrices. The co-immobilized beads exhibited good catalytic activity for azo dye degradation and kept stable during successive repeated experiments. The mechanism of the quinone-mediated reduction showed that although whole cells incubated with quinones could significantly increase the rate of decolorization of azo dyes, the quinone compounds did not directly promote azoreductase activity. According to the survey, this is the first report to confirm that the addition of quinoid redox mediators to bacteria increased decolorization under aerobic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.