Abstract
It has previously been shown [1] that pores are formed during the repeated heating and rapid cooling of commercially pure aluminum, and that as a result a deterioration in the mechanical properties of the material is observed. The fact that the intensity of pore formation increases with reduction in the diameter of the specimens being investigated — i.e., under conditions when the amount of plastic deformation decreases [2] and the rate of cooling, and consequently the concentration of quenching vacancies increases — leads to the assumption that the development of porosity observed in aluminum is due not to thermal stresses but to quenching vacancies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have