Abstract

This Letter presents theory-based predictions of anomalous electron thermal transport in the Helically Symmetric eXperiment stellarator, using an axisymmetric trapped-electron mode drift wave model. The model relies on modifications to a tokamak geometry that approximate the quasihelical symmetry in the Helically Symmetric eXperiment (particle trapping and local curvature) and is supported by linear 3D gyrokinetic calculations. Transport simulations predict temperature profiles that agree with experimental profiles outside a normalized minor radius of rho>0.3 and energy confinement times that agree within 10% of measurements. The simulations can reproduce the large measured electron temperatures inside rho<0.3 if an approximation for turbulent transport suppression due to shear in the radial electric field is included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.