Abstract

Silicon nanoparticles (Si-NPs) have been produced by plasma spray physical vapor deposition at throughput as high as 1 kg h−1 (17 g min−1) and the effect on the battery performance is investigated. When the Si powder feed-rate is changed from 1 to 17 g min−1, although the average primary particle size increases to 50 nm, the cycle capacity of the batteries using these Si-NPs is improved slightly owing to their less agglomerated structure. In contrast, when Ni is added to Si feedstock, the cycle capacity is improved at 1 g min−1 due to modified Si-NP structure having SiNi2 interface. Whereas, the batteries with the Si-NP produced at 17 g min−1 shows significant decrease in the cycle capacity because of the excess Ni silicide formation that is resulted from the elevated co-condensation point and the increased reaction area at high throughputs despite the constant Ni concentration in the feedstock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.