Abstract

The quality and structural perfection of single crystal silicon have been studied using double-crystal X-ray diffraction after hydrogen ion implantation and thermal annealing used in a number of semiconductor technologies. The fundamental difference of this approach is the possibility to rapidly obtain reliable experimental results which were confirmed using X-ray topography. Data have been presented for the condition of the damaged layer in n-type silicon single crystals (r = 100 W × cm) having the (111) orientation and a thickness of 2 mm after proton implantation at energies E = 200, 300 and 100 + 200 + 300 keV and dose D = 2 × 1016 cm-2 and subsequent heat treatment in the T = 100–900 °C range. Using the method of integral characteristics we have revealed a nonmonotonic dependence of the integral characteristics of the damaged layer, i.e., the mean effective thickness Leff and the mean relative deformation Da/a, on the annealing temperature, the maximum deformation being observed for ~300 °C. The results have allowed us to make a general assessment of the damaged layer condition after heat treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.