Abstract

The formation of bilayer-based lyotropic liquid crystals and vesicle dispersions by phospholipids in a range of protic ionic liquids has been investigated by polarizing optical microscopy using isothermal penetration scans, differential scanning calorimetry, and small angle X-ray and neutron scattering. The stability and structure of both lamellar phases and vesicle dispersions is found to depend primarily on the underlying amphiphilic nanostructure of the ionic liquid itself. This finding has significant implications for the use of ionic liquids in soft and biological materials and for biopreservation, and demonstrates how vesicle structure and properties can be controlled through selection of cation and anion. For a given ionic liquid, systematic trends in bilayer thickness, chain-melting temperature and enthalpy increase with phospholipid acyl chain length, paralleling behaviour in aqueous systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.