Abstract

ObjectiveTo evaluate protease activity of dentin matrices subjected to treatment with non-specific (chlorhexidine – CHX), cysteine cathepsin specific (E−64), and cysteine cathepsin-K (CT-K) specific (Odanacatib – ODN) inhibitors. MethodsPulverized dentin powder obtained from human dentin disks (0.5 mm thickness) completely demineralized with 10% H3PO4 were challenged in 1 mL lactic acid (LA) (0.1M, pH 5.5) or stored in deionized water for 30 min. Aliquots of dentin powder were then immersed in 1 mL of CHX (2%), E−64 (10 μM and 20 μM) or Odanacatib (0.2 nM and 1 μM) for 30min. Degradation of dentin collagen was determined by telopeptide assays measuring the sub-product release of C-terminal cross-linked telopeptides (ICTP) and C-terminal peptide (CTX) in incubation media, which correlates with matrix metalloproteinases (MMP) and CT-K activities respectively (n = 3). The ICTP and CTX data were normalized to concentration of total protein (ICTPtp and CTXtp) in the media, measured by bicinchoninic acid assay. Dentin matrix properties were also measured by gravimetric change (n = 8) and ultimate tensile strength (UTS) (n = 10). Data were analyzed by one-way ANOVA followed by Tukey's post-hoc test and independent t-test (α = 5%). ResultsTelopeptide assays showed significantly lower CTXtp values after treatment with E−64 and Odanacatib. E−64 and Odanacatib at all tested concentrations significantly reduced the release of ICTPtp. Gravimetric analysis showed no significant difference between the tested inhibitors and control except for CHX after lactic acid challenge. UTS results showed significantly higher values for E−64 (20 μM) and Odanacatib (0.2 nM and 1 μM) groups in deionized water. SignificanceDentin therapies targeting enzymes such as CT-K by specific inhibitors may provide superior pharmacokinetics and optimum efficacy due to precise protein binding, consequently limiting collagen degradation directly or indirectly by enzyme related pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.