Abstract

ObjectiveTo evaluate the protease activity in dentin matrices subjected to lactic acid (LA) in comparison to polyacrylic acid (PAA) challenge model at cathepsin K (CT-K) optimum pH 5.5 to assess effectiveness of inhibitors in dentin collagen degradation. MethodsDentin disks measuring 0.5mm prepared from human molars were completely demineralized in 10% H3PO4. Demineralized dentin disks were challenged with 0.1M LA, 1.1mM PAA, artificial saliva (AS), or deionized water (C) for 24h or 7-days. Dentin collagen properties were tested by measurement of %dry mass change, and ultimate tensile strength (UTS). Degradation of dentin type I collagen was measured by telopeptide assays measuring the sub-product release of C-terminal cross-linked telopeptides (ICTP) and C-terminal peptide (CTX) in the incubation media in relation to total protein concentration, which correlates with matrix metalloproteinases (MMPs) and CT-K activities. ResultsGravimetric analysis showed statistically significant difference between C and other groups (p<0.04) at 24h. LA specimens showed significantly higher weight loss from 24h to 7-days (p=0.02). UTS revealed statistically significant difference between AS and LA at 24h and 7-days. UTS at 24h and 7-days for C and AS had significantly higher mean values compared to LA and PAA. Telopeptide assays reported that CTXtp results showed that LA at 24h had significantly higher mean values compared to C and AS. SignificanceLA has the ability to activate endogenous CT-K in dentin as measured by the release of CTX (CT-K specific telopeptide). This LA based model has the potential application for further investigations on the activity and possible inhibitors of CT-K in human dentin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call