Abstract

There is great interest in the plant Cannabis sativa (hemp) as a source of technical fibres for the reinforcement of polymers in composite materials due to its high mechanical properties. In this work, the effect of enzymatic, hydrothermal and alkaline treatments on the composition and mechanical properties of hemp fibre are compared. The influence of enzyme concentration and treatment time was examined (2.5–80 % Pectinex® Ultra SP-L, 6–48 hrs). Additionally, hydrothermal (170 °C, 10 bars) and alkaline treatments (18 wt. % NaOH, 40 °C) were used as pre-treatments to observe their effect on subsequent enzymatic treatment. The composition of hemp fibre was analysed by wet chemistry and Fourier transform infrared spectroscopy, while microstructure and mechanical properties were examined by scanning electron microscopy and tensile testing, respectively. Enzymatic treatment resulted in extensive fibrillation and removal of non-cellulosic components, especially when combined with hydrothermal treatment. However, a lengthy enzymatic treatment or combinative enzymatic-alkaline treatment led to extensive fibre breakdown that was accompanied by a pronounced reduction in the mechanical properties. Enzymatic treatment decreased Young’s modulus and tensile strength by 77 and 73 % respectively, and alkaline treatment by 83 and 36 %. The hydrothermal treatment resulted in only minor changes in these properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call