Abstract

Objectives To evaluate and compare bond strengths of different primers and resin cements to silica-based and zirconia ceramics. Methods Silica-based and zirconia ceramic specimens were ground flat with #600-grit SiC paper. The ceramic surfaces were airborne-particle abraded and then divided into 11 groups of seven each: untreated (control); and conditioned with one of the six primers in combination with a resin cement from the same manufacturer as follows: Bistite II/Tokuso Ceramic Primer, Linkmax/GC Ceramic Primer, RelyX ARC/RelyX Ceramic Primer, Panavia F 2.0/Clearfil Ceramic Primer, and Resicem/Shofu Porcelain Primer and Resicem/AZ Primer. Stainless steel rods were bonded to the ceramic surfaces using one of the five resin cements. After 24-h water storage, the tensile bond strengths were tested using a universal testing machine and failure modes were examined. Results Conditioning with primers containing a silane coupling agent (all the primers except AZ Primer) significantly enhanced bond strengths of resin cements to silica-based ceramic. For zirconia ceramic, Resicem/AZ Primer exhibited significantly higher bond strength than the other groups except Panavia F 2.0/Clearfil Ceramic Primer. The predominant failure mode of the groups conditioned with primers containing a phosphonic acid monomer (AZ Primer) or a phosphate ester monomer (Clearfil Ceramic Primer and Tokuso Ceramic Primer) was cohesive failure in cements whereas that with the other primers was adhesive failure at the zirconia surfaces. Significance The use of primers containing a silane coupling agent improved resin bonding to silica-based ceramic. On the other hand, the use of primers containing a phosphonic acid monomer or a phosphate ester monomer improved resin bonding to zirconia ceramic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.