Abstract

We have investigated the effect of pressure on excited-state intramolecular proton transfer (ESIPT) in 3-hydroxyflavone dissolved in four polymeric matrixespoly(methyl methacrylate) (PMMA), poly(vinyl acetate) (PVAc), poly(acrylic acid) (PAA), and cellulose acetate (CAC). We have also determined the change in normalized equilibrium constant (K*) and the change in partial molar volume (ΔV) as a function of pressure. In all matrixes, with an increase of pressure, the fluorescence intensity of the phototautomer decreases. In PMMA, PVAC, and CAC, the equilibrium constant (K) and change of partial molar volume (ΔV) are sensitive to pressure below 30 kbar. The results imply that ESIPT of 3-hydroxyflavone is effectively suppressed by pressure. The anomalous proton-transfer behavior of 3-hydroxyflavone in PAA can be explained by protonation of the carbonyl oxygen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.