Abstract

The pre-heating of dental resin-based composites (RBCs) improves adaptability to cavity walls, reducing microleakages. However, the rapid cooling of the pre-heated RBC may change the polymerization kinetics, and thus the final network configuration of the RBC. It is well known that unreacted monomers remaining in the set RBC can leach into the oral cavity. However, it is still not clear how the pre-heating and cooling of RBCs alter monomer elution (ME). Thus, the purpose was to determine the ME from room-temperature and pre-heated RBCs, in addition to determining the closed porosity (CP) volume. Bulk-filled RBCs and layered conventional RBC samples were prepared. The pre-polymerization temperature was set at 24 °C and 55/65 °C. The ME from RBC samples was assessed with high-performance liquid chromatography using standard monomers. CP was measured with micro-computed tomography. ME decreased significantly from bulk fills and increased from layered samples as a result of pre-heating. Pre-heating was unfavorable in terms of CP in most RBCs. Based on the effect size analysis, ME and CP were greatly influenced by both material composition, pre-polymerization temperature, and their interaction. While the pre-heating of high-viscosity bulk-fill RBCs is advantageous from a clinical aspect regarding biocompatibility, it increases CP, which is undesirable from a mechanical point of view.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.