Abstract

The valve stem used in the main steam system of nuclear power plant is usually 17-4PH martensitic stainless steel. When it served in 300°C for a long time, the thermal aging embrittlement of valve stem will be significant, with the performance of the ductile brittle transition temperature (DBTT) and the hardness increased, the upper stage energy (USE) decreased. It will increase the risk of brittle fracture of the valve stem, and seriously affect the safety and economic operation of nuclear power plant (NPP). Similar cases have occurred in foreign nuclear power plants. Therefore, it is important to study the thermal aging effect of the 17-4PH steel used as valves in nuclear power plant. In this work, the 17-4PH martensitic stainless steel samples served in nuclear power plant for many years were studied, and they exhibit obvious thermal aging embrittlement. By use of small angle neutron scattering (SANS) and three-dimensional atomic probe (3DAP), the nanosize precipitate in stainless steel is studied. The results show that the size of the larger cluster (~7nm) in stainless steel increases and the volume fraction of the cluster with size of ~1nm increases obviously after thermal aging. The larger nanosize precipitate was growing up during long service at high temperature, and precipitation of the smaller ones continuously occurred. Combing with the results of 3DAP, the nanosize clusters were formed by segregation of Ni, Mn and other elements with Cu-rich cluster, which are mainly in the form of Cu core and Ni-Mn shell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call