Abstract

(Ba,Ca)TiO3 samples with the ratio of (Ba+Ca) to Ti as unity but prepared by (i) a semiwet route involving (Ba,Ca)CO3 solid solution precursors and TiO2 and (ii) the conventional dry route involving BaCO3, CaCO3, and TiO2 powders, exhibit diffuse and BaTiO3-type sharp ferroelectric phase transitions, respectively. Rietveld analysis of neutron powder diffraction data from the two types of samples shows that, whereas in the samples prepared by the semiwet route, Ca2+ exclusively occupies the Ba2+ site, nearly half of the substituted Ca2+ occupies the Ti4+ site in the case of samples prepared by the dry route. We show that Ca replacement at the Ba site leads to diffuseness whereas Ca introduction at the Ti site leads to sharpening of the transition. To our knowledge, this is the first clear demonstration of the powder synthesis procedure affecting the substitutional sites in multicomponent ceramics and this, in turn, influencing their physical behavior drastically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.