Abstract

Studies have indicated that periodontal pathogen Porphyromonas gingivalis (P. gingivalis) infection may contributed to accelerate the development of atherosclerosis. The aim of this study was to investigate the effect of inflammation, oxidative stress and the mechanism on atherosclerosis in apolipoprotein-E knockout (ApoE-/-) mice with P. gingivalis infection. Eight-week-old male ApoE-/- mice (C57BL/6) were maintained under specific pathogen-free conditions and fed regular chow and sterile water after 1 weeks of housing. The animals were randomly divided into two groups: (a) ApoE-/- + PBS (n=8); (b) ApoE-/- + P.gingivalis strain FDC381 (n=8). Both of the groups received intravenous injections 3 times per week for 4 weeks since 8 weeks of age. The sham control group received injections with phosphate buffered saline only, while the P. gingivalis-challenged group with P.gingivalis strain FDC381at the same time. After 4 weeks, oxidative stress mediators and inflammation cytokines were analyzed by oil red O in heart, Enzyme linked immunosorbent assay (ELISA) in serum, quantitative real-time PCR and Western blot in aorta. In our study, we found accelerated development of atherosclerosis and plaque formation in aorta with oil red O staining, increased oxidative stress markers [8-hydroxy-2-deoxyguanosine (8-OHdG), NADPH oxidase (NOX)-2 and NOX-4], as well as increased inflammation cytokines [interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α)] in the serum and aorta of the P. gingivalis-infected ApoE-/- mice. Compared with the control group, there was a significant increase protein level of nuclear factor-kappa B (NF-κB) in aorta after P. gingivalis infection. Our results suggest that chronic intravenous infection of P. gingivalis in ApoE-/- mice could accelerate the development of atherosclerosis by disturbing the lipid profile and inducing oxidative stress and inflammation. The NF-κB signaling pathway might play a potential role in the P. gingivalis-accelerated atherogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.