Abstract

This research aims to develop a computational model that can accurately predict the fracture behavior of porous bi-directional Functionally Graded Materials (FGMs). The Voigt model for homogenization, is established to account the effects of porosity fraction and gradient distribution within the FGMs, providing valuable insights about the brittle crack propagation. The study employs the UMAT subroutine in ABAQUS software and establishes an analogy between the phase field evolution law and the heat transfer equation, enabling efficient analysis of complex fracture problems. To validate the model, 2D fracture benchmark cases are analyzed, demonstrating its ability to capture different failure modes and the intricate material behavior of porous FGMs under fracture conditions. Furthermore, newly parametric analyses, that highlights the impact of various values of porosity’s volume fraction and FGM’s power law indexes on the brittle fracture path, are conducted to further validate the effectiveness of the newly developed phase field model in predicting the fracture behavior of bi-directional porous FGMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.