Abstract

Our earlier studies on the preparation of chiral stationary phases (CSP) based on superficially porous (or core-shell) silica (SPS) particles for the separation of enantiomers in HPLC have provided proof to the advantages of such sorbents. In particular, higher enantioselectivity was observed with the columns packed with superficially porous CSP compared to the columns packed with fully-porous (FP) silica-based CSPs at comparable content of chiral selector (polysaccharide derivative) in CSP. Also, less dependence of plate height on mobile phase flow rate and higher plate numbers and resolution calculated per unit time (i.e. speed of separation) were observed with SPS-based CSPs. Thirty years of CSP development have demonstrated that wide-pore silica has to be used as a support for large molecular weight chiral selectors such as the ones based on polysaccharides. In this study the effect of pore size of the core-shell silica support and of other experimental factors on column performance is demonstrated. Reduced plate heights in the range 1.4–1.5 were obtained, as well as highly effective baseline separations of enantiomers were observed with analysis times of less than 15s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.