Abstract
To investigate the effects of polyunsaturated fatty acids (PUFA) ω-3 and ω-6, and their middle metabolites PGE2 and PGE3 on angiogenesis formation of gastric cancer, and to explore associated mechanism. The effects of ω-3, ω-6, PGE2, PGE3 on the proliferation and migration of human umbilical vein endothelial cell (HUVEC) were measured by proliferation and migration assay respectively. The angiogenesis assay in vivo was used to measure the effects of ω-3, ω-6, PGE2 and PGE3 on neovascularization. In all the assays, groups without ω-3, ω-6, PGE2 and PGE3 were designed as the control. With the increased concentration of ω-6 from 1 μmol/L to 10 μmol/L, the proliferation ability of HUVECs enhanced, and the number of migration cells also increased from 28.2±3.0 to 32.8±2.1, which was higher than control group (21.2±3.2) respectively (both P<0.05). With the increased concentration of ω-3 from 1 μmol/L to 10 μmol/L, the proliferation ability of HUVECs was inhibited, and the number of migration cells decreased from 15.8±2.0 to 11.0±2.1, which was lower than control group (22.1±3.0) respectively (both P<0.05). In the angiogenesis assay, compared with control group (standard number: 43 721±4 654), the angiogenesis ability of HUVECs was significantly enhanced by ω-6 in concentration-dependent manner (1 μmol/L group: 63 238±4 795, 10 μmol/L group: 78 166±6 123, all P<0.01). Meanwhile, with the increased concentration of ω-3 from 1 μmol/L to 10 μmol/L, the angiogenesis ability was significantly decreased from 30 129±3 102 to 20 012±1 541(all P<0.01). The proliferation and migration ability of HUVECs were significantly promoted by ω-6 metabolites PGE2 (P<0.05) in a concentration-dependent manner. In contrast, ω-3 metabolites PGE3 significantly inhibited the proliferation and migration ability of HUVECs in a concentration-dependent manner (all P<0.05). After rofecoxib (a COX-2 specific inhibitor) inhibited the expression of COX-2, the expression level of PGE2 was significantly decreased in a dose-dependent manner. In co-culture system, whose gastric cancer cells expressed positive COX-2, ω-6 could increase angiogenesis of gastric cancer cells(P<0.01), but ω-3 could inhibit such angiogenesis(P<0.01). In co-culture system, whose gastric cancer cells did not express COX-2, ω-3 could inhibit the angiogenesis of gastric cancer cells (P<0.05), but ω-6 had no effect on angiogenesis. The PUFA ω-6 can enhance the angiogenesis via the promotion of proliferation and migration of HUVECs, and COX-2 and PGE2 may play an important role in this process, whereas, the ω-3 can inhibit the angiogenesis through its middle metabolites PGE3 to inhibit the proliferation and migration of HUVECs. Results of this experiment may provide a new approach to inhibit and prevent the spread of gastric cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.