Abstract

In this study, we developed a polystyrene-platinum/nitrogen-doped titanium dioxide/strontium titanate composite-polyvinylpyrrolidone (PS-PNS-PVP) photocatalyst film, which is applied in the process of photocatalytic hydrolysis under simulated sunlight to produce hydrogen, is developed. PS, which is cheap, non-toxic, with high UV resistance, and chemical inertness, is used as a carrier, and a highly effective hydrogen production of Pt/N–TiO2/SrTiO3 as a photocatalyst. The influence of the PS concentration on the stability, optical, and electrical properties of the photocatalyst film is discussed. In addition, the influence of the photocatalyst dispersion in the film on the activity under various photocatalyst concentrations was investigated. A polyvinylpyrrolidone pore-forming agent was then used to examine the effect on the photocatalyst film structure and optical properties, and the subsequent influence on photocatalytic hydrogen energy activity. Adjusting the PS concentration to 20 wt% produced good film-forming stability, and the photocatalyst dispersibility in the film under different photocatalyst concentrations. A photocatalyst concentration of 2.5 wt% resulted in good film dispersibility and the realization of added pore-forming agent. The modified photocatalyst film changed the film from a blind pore structure to a connecting void structure, increasing the film's porosity and hydrophilicity. This increased the number of photocatalytic sites, and the optimal hydrogen production of the photocatalyst film reached 21,333 μmol h−1 g−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.