Abstract

Polymaleic acid was tested for its ability to control inorganic fouling in reverse osmosis (RO) system for the first time as a membrane surface modifier. Using the design of experiments (DoE) based on the response surface methodological (RSM) approach, the effect of polymaleic acid concentration and microwave radiation time duration was studied on the membrane permeation properties. Considering the objective of achieving maximum water permeance and salt rejection properties, the conditions of polymerization were optimized using RSM and experimentally validated in the lab. At the optimum conditions of 10 mg·L−1 polymaleic acid, and 27 s radiation time, the pure water permeance and salt rejection were 3.05 L·m−2·h−1·bar−1, and 97.8 %, respectively. The optimized membrane was characterized through microscopic and spectroscopic techniques. When tested for its performance under inorganic fouling conditions, the modified membrane demonstrated a negligible decline in permeate flux for 6 h, and no formation of calcium sulfate precipitates on the membrane surface. This research aims to promote the development, optimization, and application of dual-functional RO membranes that can control different types of membrane fouling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.