Abstract
In this paper, the rheological parameters of the alkali-activated slag underwater non-dispersible paste (AAS-UNDP) were tested, and the influence of polyacrylamide (PAM) on the rheological property of AAS-UNDP was studied combing with the method of molecular dynamics simulation. The experimental results show that the rheological model of AAS-UNDP and cement basted underwater non-dispersible paste (CB-UNDP) are consistent with the Herschel-Bulkley model. The results of molecular dynamics simulation show that the anions in PAM and the OH− alkali-activated slag cementitious material (AASCM) can produce repulsive force, so the potential energy of the AASCM is lower than the potential energy of the cement based cementitious material (CBCM).The mean square displacement (MSD) value and self-diffusion coefficient of PAM in the AASCM are higher than those of CBCM, indicating that the diffusion rate of particles in the AASCM is better than that of CBCM.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have