Abstract

To evaluate the effect of 3.5-mm locking compression plate (LCP) length on construct stiffness and plate and bone model strain in a synthetic, short-fragment, fracture-gap model. Six replicates of 6-hole, 8-hole, 10-hole, and 12-hole LCP constructs on a short-fragment, tubular Delrin fracture gap model underwent four-point compression and tension bending. Construct stiffness and surface strain, calculated using three-dimensional digital image correlation, were compared across plate length and region of interest (ROI) on the construct. The 12-hole plates (80% plate-bone ratio) had significantly higher construct stiffness than 6-hole, 8-hole, and 10-hole plates and significantly lower plate strain than 6-hole plates at all ROIs. Strain on the bone model was significantly lower in constructs with 10-hole and 12-hole plates than 6-hole plates under both compression and tension bending. Incremental increases in construct stiffness and incremental decreases in plate strain were only identified when comparing 6-hole, 8-hole, and 10-hole plates to 12-hole plates, and 6-hole to 12-hole plates, respectively. Strain on the bone model showed an incremental decrease when comparing 6-hole to 10-hole and 12-hole plates. A long plate offered biomechanical advantages of increased construct stiffness and reduced plate and bone model strain, over a short plate in this in vitro model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.