Abstract

PLA films, as non-absorbent materials, require modification of the surface before the printing process in order to improve the wettability of the substrate and to obtain proper ink adhesion to the substrate. In this paper, the surfaces of two kinds of PLA films were modified using plasma activation with parameters enabling high surface free energy (SFE) values, and then the films were printed on using different kinds of flexographic inks. Two gases, oxygen and argon, were used for activation, as these make it possible to obtain good hydrophilicity and high SFE values while having different effects on the roughness, or the degree of surface etching. Plasma-activated films were subsequently subjected to the measurements of: contact angle with water, diiodomethane and three printing inks, roughness, weight change, strength properties, color and gloss change, and SFE was determined. Unmodified and activated films were flexographically printed in laboratory conditions and then the quality of obtained prints was analyzed. The results showed a strong effect of activation with both oxygen and argon plasma on the SFE value of the films and the contact angles of water and inks, with the gas used for plasma activation and the type of film significantly influencing the thickness of the fused ink layer and the resultant color. Moreover, plasma activation had a especially favorable and significant effect on the quality of prints made with water-based inks, while it had little effect when printing with solvent-based inks.

Highlights

  • Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations

  • One of the key biodegradable plastics is polylactide (PLA) [4,5,6], which (as a non-absorbent substrate) can be printed using flexographic or gravure printing techniques commonly used in industry

  • The results presented are the average of five measurements.The surface free energy of the film as well as its polar and dispersion components were calculated based on contact angle measurements with water and diiodomethane

Read more

Summary

Introduction

This technology enables high quality printing with an optimized selection of printing process parameters [9]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.