Abstract

The aim of this study was to investigate the effect of plasma-activated water (PAW) during extrusion on the formation of endogenous starch complexes with wheat starch (WS) as a model material. Using PAW during the extrusion process resulted in an increase in amylose content from 27.87 % to 30.07 %. Results from Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry indicated that the PAW facilitated the formation of endogenous starch-lipid complexes during extrusion. PAW120 (distilled water treated by plasma for 120 s) showed a better promotion effect than PAW60 (distilled water treated by plasma for 60 s). EWS120 (WS extruded using PAW120) exhibited lower peak viscosity and swelling power, but higher solubility, particle size, and resistant starch content compared with EWS0 (WS extruded using distilled water) and EWS60 (WS extruded using PAW60). In a word, the acidic substances in PAW may lead to hydrolysis of starch and generate more amylose, thus improving the amount of endogenous starch-lipid complexes. The present study provides a novel extrusion method to obtain modified starch with higher RS content than common extrusion, which has potential application in the industrial production of functional foods with low glycemic index.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call