Abstract

Ultrasonic guided waves is one of the most effective nondestructive testing techniques, which has been successfully applied for damage detection and evaluation of piping components. However, research about defects detection for pipelines with multiple bends is still limited. In this paper, effect of pipe bend arrangement on guided waves-based defect detection is investigated by experimental method, in which different configurations including space-Z type, U type, and plane-Z type are considered, respectively. Finite element (FE) simulation is used to explore the propagation behaviors of axisymmetric L (0, 2) mode in different bend configurations. On this basis, the detection sensitivity for different crack locations is experimentally investigated. Simulation and experiment results reveal that feature of guided waves propagation across the first and the second bend is totally different, and the defect detection sensitivity in the second bend is different from that in the first bend.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.