Abstract

The alternative combustion strategies with systematic control of mixture formation have provided new opportunities and considerable improvement in the combustion process and response to meet the stringent emissions standards. Purpose of this research is to investigate the influences of pilot injection on the fuel-air premixing especially during ignition delay period. During this period, the interaction between fuel spray and surrounding gas prior to ignition which linked to the improvement of mixture formation, ignition process and initial heat recovery thus predominantly influences the combustion process and exhaust emissions. This study investigates the effects of pilot injection using a rapid compression machine together with the schlieren photography and direct photography methods. The detail behavior of mixture formation during ignition delay period was investigated using the schlieren photography system with a high speed digital video camera. This method can capture spray evaporation, spray interference and mixture formation clearly with real images. Ignition process and flame development were investigated by direct photography method using a light sensitive high-speed color digital video camera. Pilot injection promotes mixture formation during ignition delay period and slower oxidation reaction and thus leads to earlier rise and lower peak heat release rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call