Abstract
The effect of pigments on mechanical properties of coloured concrete intended for structural applications, including the bond stress-slip behaviour to embedded steel bars, is not well understood. Series of concrete mixtures containing different types and oncentrations of iron oxide (red and grey colour), carbon black, and titanium dioxide (TiO2) pigments are investigated in this study. Regardless of the colour, mixtures incorporating increased pigment additions exhibited higher compressive and splitting tensile strengths. This was attributed to the micro-filler effect that enhances the packing density of the cementitious matrix and leads to a denser microstructure. Also, the bond to steel bars increased with the pigment additions, revealing their beneficial role for improving the development of bond stresses in reinforced concrete members. The highest increase in bond strength was recorded for mixtures containing TiO2, which was ascribed to formation of nucleus sites that promote hydration reactions and strengthen the interfacial concrete-steel transition zone. The experimental data were compared to design bond strengths proposed by ACI 318-19, European Code EC2, and CEB-FIP Model Code.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.