Abstract
It is shown that changes in device characteristics and an increase in the light-to-electrical energy conversion efficiency in metal-semiconductor Schottky barrier contacts are associated with a peripheral electric field built into the contact. For contacts with longer perimeters, variations in device characteristics and the light-to-electrical energy conversion efficiency are significantly larger. Since the photovoltage and peripheral electric fields in the contact region are codirected with the intrinsic electric field of the space-charge region, contact illumination results in a larger increase in the “dead” zone in forward portions of current-voltage characteristics, a larger decrease in the effective Schottky barrier height, and an increase in the field electron emission. An increase in the reverse field emission under photovoltage leads to an increase in the recombination current in the space-charge region, which provides dc photocurrent flow in the circuit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.