Abstract
The present study was executed to evaluate the effect of photoperiod on serum biochemical parameters (glucose, cortisol, ALT, AST and LDH), electrolytic balance (Sodium and potassium), acute phase response (CRP) and histopathology (liver, kidney and skin) of an endangered high valued catfish, Ompok bimaculatus. Catfish (21.00 ± 1.53cm and 30.00 ± 2.31g) from the acclimatized stock were randomly distributed to six 120 × 45 × 60 cm3 FRP tanks (n = 20 fish per tank) and exposed to 1500lx light intensity under different photoperiods [24:0 light: dark (L: D), 15L: 9D, 12L: 12D, 9L: 15D, 0L: 24D and a natural photoperiod (control)], and fed at a daily rate of 2% of bodyweight, twice a day for 60days. Serum glucose, cortisol and enzymes including aspartate transaminase (AST), lactate dehydrogenase (LDH), alanine transaminase (ALT), and acute phase reactant, such as C-reactive protein (CRP) increased significantly (P < 0.05) in continuous light (24L: 0D), continuous dark (0L: 24D) and short day (9L: 15D) photoperiods, whereas in 15L: 9D and 12L:12D photoperiods, those were in decreasing trend. Serum electrolytes, i.e. potassium level was elevated and sodium level was declined in 24L: 0D, 0L: 24D and 9L: 15D photoperiod groups. Moreover, significant histological alterations in the liver, kidney and skin tissue were also evidenced in the experimented catfish. Typical polygonal hepatocytes with normal blood vessels in liver and normal organization of kidney were seen in catfish of 15L: 9D group. Histological analysis of other groups displayed nuclear degeneration, karyorrhexis, karyolysis, melanomacrophages, nuclear hypertrophy, sinusoid dilation and vacuolar degeneration in liver and hyaline droplets accumulation, granular degeneration, fragmentation of glomerulus and focal necrosis of epithelial cells in kidney. Additionally, general structure of the skin was observed in control group as well as in 15L: 9D group. Contrarily, in 24L: 0D group increased number of mucous cells and vacuoles was observed in the skin of butter catfish. In 9L: 15D and 0L: 24D photoperiods, O. bimaculatus exhibited ruptured epithelial cells, enlarged alarm cells, fat cells, necrotic cells and vacuoles in the skin tissue. The present study depicted that 15L: 9D photoperiod can induce better health of catfish, O. bimaculatus, which, in turn, can help farmers to increase the production of this high valued catfish in future.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have