Abstract

Although PO43- is commonly found in association with iron (oxyhydr)oxide, the effect of PO43- on ferrihydrite reduction, mineralogical transformation, and associated As behavior in sulfate-reducing bacteria (SRB)-rich environments remains unclear. In this study, batch experiments, together with geochemical, mineralogical, and biological analyses, were conducted to elucidate these processes. The results showed that SRB can reduce ferrihydrite via direct and indirect processes, and PO43- promoted ferrihydrite reduction by supporting SRB growth at low and medium PO43- loadings. However, at high loadings, PO43- stabilized the ferrihydrite. PO43- shifted the transformation of ferrihydrite from magnetite and mackinawite to vivianite, which scavenges As effectively by incorporating As into its particle. In systems with 0.5 mM SO42-, PO43- exerted a weak effect on As mobilization. However, in systems with 10 mM SO42-, substantial amounts of As were released into the solution, and PO43- impacted As behavior strongly. Low PO43- loadings increased the mobilization of As because of the competitive adsorption of PO43- on mackinawite. Medium and high PO43- loadings were beneficial for As immobilization because of the substitution of mackinawite by vivianite. These findings have important implications for understanding the biogeochemistry of iron (oxyhydr)oxide and As behavior in SRB-containing sediments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.